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Presented is a Monte Carlo calculation of the distributions of absorbed energy and photon and energy fluxes 
in a hemisphere of water with a 1.26 MeV T-ray point source at the center. Finite and infinite radi iof the 
hemisphere are considered, and the results are compared with those obtained by numerical integration and 
by an approximate calculation. It is shown that in no case do the differences exceed 13%. 

The design and operation of radiation apparatus involves a series of serious engineering and physical problems re- 
lated to the study of the passage of radiations through matter. In contrast to problems of shielding physics, relatively 
thin layers of matter, usually not in excess of 30-50 cm in the case of a water-equivalent medium, are concerned. At 
the same time, the error in tile results, especially in the analysis of the distribution of absorbed energy, must not be 
worse than 10% In this connection, the extensive information obtained in the solution of problems of shielding physics 
is not always applicable. 

The method used in this paper consists in constructing a probability model of the process of the passage of T-radia-  
tion through matter and in tracking a large number of trajectories (histories) of different independent y-quanta, each of 
which behaves according to the probability model constructed. Each trajectory is a single experiment, and the accuracy 
of the method depends upon the total number of such experiments [1-3]. 

The calculation was performed on the two-address Minsk-I electronic computer. Previous calculations were made 
on computers superior to the Minsk-1 in possessing a considerably greater storage capacity and floating point arithmetic 
[4, 5], in connection with which a special program was developed. Since the Minsk-1 is a machine with fixed point 
arithmetic, a floating point was introduced in the program. With the aim of reducing program length, pseudo-instruc- 
tions were used to replace arithmetic operations. An interpretive standard subroutine serves for deciphering these pseudo- 
instructions and executing the corresponding arithmetic operations in the floating point regime. 

The following parameters are printed out: rectangular and polar coordinates of points at which collisions occur; 
energy losses in each collision and the energy with which a T-quantum arrives at the collision point; type of interaction. 
If the T-quantum emerges backwards, the escape geometry is also registered. The history is completed with photoab- 
sorption or escape of a quantum from the region considered. The history is also interrupted if a quantum reaches a cut-  
off energy ami  n for which the probability of photoabsorption considerably exceeds the probability of Compton scattering. 
This energy is taken to be 0.04 MeV, and it is assumed that at this energy the quantum undergoes photoabsorption. 
Analysis of the data obtained shows that in this case the resulting error does not exceed 1~ Only Compton scattering 
and the photoeffect were considered in the calculations. 1017 histories were evaluated. A block diagram of the pro- 
gram is shown in Fig. 1. Let us consider the functions of the operators: • defines the azimuthal scattering angle; L com-  
putes the range of the y 'quan tum in the material X, Y, Z, r compute the coordinates of the point of interaction of the 
quantum with an electron of the material;  comparison of r and Z keeps track of the quantum until it passes through the 
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Fig. 1. Block diagram of the program. 
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layer (r > R) or escapes backwards (Z < 0); the "type of interaction" operator denotes the interact ion process (if gq,/g < A,~ 
Compton scattering occurs; if gr > A, photoabsorption); a '  determines the energy of the quantum after scattering 
(ca lcula ted  by the method of successive approximations,  the first approximation being taken as c~' = rx); comparison of a 
verifies fulf i l lment  of the condit ion a '  > a m i n ;  the "reset" operator is needed for preparing the program to ca lcu la te  a 
new history, i . e . ,  for restoring the original form of the variable instructions. 

To obtain pseudo-random numbers a special  program based on choosing the middle  of the product of two numbers 
[3] was compi led .  The process consists in mult iplying together two n-dig i t  random numbers A k and Ak+ 1 (using mul t i -  
p l ica t ion  with double precision); a 2n-digi t  product is obtained.  The middle  n-digi ts  of the product are taken as Ak+2 �9 
Then the process is repeated with Ak+ 1 and Ak+ 2 to obtain the succeeding number, and so on. The program provides for 
a check on the uniformity of distribution of the sequence of pseudo-random numbers over the interval  (0, 1). 
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Fig. 2. Energy absorbedinhemispher ica l  

annular layers iMeV). 1017 y-quantum 
histories were calcula ted:  a) by Monte 
Carlo, b) by the gamma-method ,  c) by 
numer ica l  integration.  

ance of a max imum in the absorbed energy 

To ca lcula te  the energy absorbed, the irradiated medium is divided 
into concentr ic  hemispheres at radial  intervals of 3 and 5 cm.  For each 
collision, the difference in energy of the incoming and outgoing y-quanta  
was recorded.  The energy losses in collisions were then summed over each 
spherical  layer .  In view of the small  range of secondary electrons, i t  was 
assumed that a l l  the energy losses were absorbed di rec t ly  at  the point  of 
interact ion.  The distribution of absorbed energy in an infinite hemisphere 
thus obtained is shown in the histogram in Fig. 2, which also shows the cor-  
responding values obtained by the gamma-method. According to the lat ter ,  

the absorbed dose from a point source may be obtained from W ~ SE0 x 
• exp ( -7r )  x y/4~rr ~. Then, for the energy absorbed ' in  the layer  between 

R t and P~, we get: 

R~ 

A W - t W4r, ladr = 

R, 

= S E o [ e x p ( - - y R , )  - e x p  ( - -  yR2)] .  

For comparison, the same histogram shows values of AW obtained by numer-  
ica l  integration using values of the absorbed energy bui ld-up factor obtained 
by integrating the data of [6]. Clearly,  the differences between values of 
the absorbed energy obtained by the Monte Carlo method and by numerical  
integration do not exceed 8%. For smal l  thicknesses, this is l inked with the 
fact that with the assumed geometry contributions to the absorbed energy 
due to quanta ref lected from the back ha l f -space  are excluded.  The appear-  

at  a depth of 3-6 cm has the same explanation.  A study of the effect of the 
finiteness of the medium of the distribution of absorbed energy in a hemisphere qual i ta t ive ly  confirms the relations ob-  

tained by Spencer and Berger [7]. However, our values for the corrections for a finite medium are 0 . 6 - 0 . 9  t imes those 
given in [7]. Comparison of the values of the absorbed energy obtained by the Monte Carlo and gamma-methods  permits 

certain conclusions on the app l i cab i l i ty  of the gamma-me thod  to the ca lcula t ion  of the absorbed dose. For the th ick-  
nesses shown in Fig. 2, the method gives results that are somewhat too low (within 13%). The anomalous behavior of the 

method at the boundary of the irradiated object  (see histogram) is related to the influence of edge effects on the Monte 
Carlo ca lcula t ion .  
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In calcula t ing the energy and y-quanta fluxes, we recorded each cross- 

ing by a y-quantum of concentr ic  spherical  surfaces with thesame spacing as 

used in the absorbed energy calculat ions,  with part icular  at tent ion to quanta 

scattered from hemispheres of greater radius to those of lesser radius. Values 

of the energy and number of quanta bui ld-up factors are shown in Fig. 3. The 

difference between the energy bui ld-up factors obtained by the Monte Carlo 
method and in [6] does not exceed 10%. At small  thicknesses, as in the case 

of the absorbed dose bui ld-up factor, the effect of the finiteness of the med-  
ium is not great.  However, in the case of the number bui ld-up  factor the 
effect  is more considerable.  With increasing thickness, this factor increases 
rapidly, due to the decrease in energy of the scattered quanta. The mean 
energy of the scattered quanta as a function of the depth of penetrat ion for a 
hemisphere of radius 50 cm has the following values;  for r = 3 cm, E = O. 63 
MeV; 9-0.56; 15-0.49; 18--0.46; 21-0.43; 24-0.41; 27-0.38; 30-0.36; 
35-0.32; 40-0.29; 50-0.25. 

/ 

0 /0 20 dO bO 

Fig. 3. 1) Energy build-up factor, 
2) bui ld-up factor for number of y -  

quanta. 
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There follows a detai led formulat ion of each operator used in calcula t ing the quantum trajectories in water by the 
Monte Carlo method: 

X - - 2 ~ A ;  L - -  1 In 1 . 
,~ (~) i A 

p. (~) = p.,r + ~%; 

2 4- 8~ + 9 ~  2 4- a3 

~K = 0 .082388 
~2 __ 2~ - -  2 

0~ 3 
In (1 + 2~) + 

a ,  = O. 1352537 10 -4  (3)--3,252434 + 0 . 4 8 5 6 0 6 8 8  10-4; ~ - 2  
a ~ ( 1 + 2a) ~ 

Xn+ 1 = X n --~ Ln+ 1 sin 0n+ 1 COS ~0n+l; Yn+l = Yn + Ln+l sin 0~+1 sin (Pn+l; 

Zn+f ~- Z n + Ln+ 1 COS On+l; 
~' -t- CZ'~ - -  0: 

COSOn+I = COS mn+l COS O n -Jr- Sift ton+ 1 s[rl ~n COS Xn+l; COS r = 

s i n  (~n+ l  - -  qDn)----- s in  %n+a s in  (on+ 1 ; 

sin On+ 1 

COS ton+ 1 -- COS O n COS On+ 1 
COS (q)n+l -- qOn) = 

sin O n sin 0n+~ 

The quantity a '  is found from 

A = [ ~ @ 4  1 

[ ~ - -  2~ - -  2 
X ~ 3  

NOTATION 

~ - - 2 ~ - - 2  ~ ] 2= + 1 =, (~,)__~_2 + In X 
7 

l n ( 2 a +  1 ) + 2  2 4 - 8 a 4 - 9 a  2 ~ a  s ] - 1  
a2(2a + 1)3 J 

E0 - i n i t i a l  energy of y-quanta ;  a and a '  - energies of quanta before and after scattering (c~ = F]0.51); A - r a n -  

dom number; p (a )  - coeff icient  of at tenuat ion of y- rad ia t ion ;  p~ - coeff ic ient  of photoabsorpfion; y - true absorption 

coeff ic ient ;  X, Y, Z - rectangular coordinates of point of interact ion;  r - distance from source to point of interact ion;  
L - range of quanta; R - radius of hemisphere;  S - intensity of radiat ion source; W - energy absorbed at  point of in ter -  

act ion;  AW - energy absorbed in annular hemispher ica l  layer ;  • - az imuthal  scattering angle;  PK - coeff ic ient  of 

Compton scattering; the indices n and n + 1 re la te  to two successive collisions; O n - a n g l e  between z axis and direct ion 

of motion of a quantum after the n - th  scattering; ~n - angle between the plane XOZ and the plane passing through the 
ve loc i ty  vector of the quantum after the n- th  coll ision and the Z axis ; w - scattering angle  of quantum in Compton 
scattering,  
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*The equation for p@ was suggested by V. A. El ' tekov and B. M. Terent ' ev .  
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