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Presented is a Monte Carlo calculation of the distributions of absorbed energy and photon and energy fluxes
in a hemisphere of water with a 1.26 MeV y-ray point source at the center. Finite and infinite radii of the
hemisphere are considered, and the results are compared with those obtained by numerical integration and
by an approximate calculation. It is shown that in no case do the differences exceed 13%.

The design and operation of radiation apparatus involves a series of serious engineering and physical problems re-
lated to the study of the passage of radiations through matter. In contrast to problems of shielding physics, relatively
thin layers of matter, usually not in excess of 30-50 cm in the case of a water-equivalent medium, are concerned. At
the same time, the error in the results, especially in the analysis of the distribution of absorbed energy, must not be
worse than 10%. In this connection, the extensive information obtained in the solution of problems of shielding physics
is not always applicable.

The method used in this paper consists in constructing a probability model of the process of the passage of y-radia-
tion through matter and in tracking a large number of trajectories (histories) of different independent y-quanta, each of
which behaves according to the probability model constructed. Each trajectory is a single experiment, and the accuracy
of the method depends upon the total number of such experiments [1-3].

The calculation was performed on the two-address Minsk-1 electronic computer. Previous calculations were made
on computers superior to the Minsk-1 in possessing a considerably greater storage capacity and floating point arithmetic
[4. 5] in connection with which a special program was developed. Since the Minsk~1 is a machine with fixed point
arithmetic, a floating point was introduced in the program. With the aim of reducing program length, pseudo-instruc-
tions were used to replace arithmetic operations. An interpretive standard subroutine serves for deciphering these pseudo-
instructions and executing the corresponding arithmetic operations in the floating point regime.

The following parameters are printed out: rectangular and polar coordinates of points at which collisions occur;
energy losses in each collision and the energy with which a y-quantum arrives at the collision point; type of interaction.
If the y-quantum emerges backwards, the escape geometry is also registered. The history is completed with photoab-
sorption or escape of a quantum from the region considered. The history is also interrupted if a quantum reaches a cut-
off energy o ;) for which the probability of photoabsorption considerably exceeds the probability of Compton scattering.
This energy is taken to be 0.04 MeV, and it is assumed that at this energy the quantum undergoes photoabsorption.
Analysis of the data obtained shows that in this case the resulting error does not exceed 1%. Only Compton scattering
and the photoeffect were considered in the calculations. 1017 histories were evaluated. A block diagram of the pro-
gram is shown in Fig. 1. Let us consider the functions of the operators: X defines the azimuthal scattering angle; L com-
putes the range of the y-quantum in the material X, Y, Z, r compute the coordinates of the point of interaction of the
quantum with an electron of the material; comparison of r and Z keeps track of the quantum until it passes through the
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Fig. 1. Block diagram of the program.
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layer (r > R) or escapes backwards (Z < 0); the "type of interaction” operator denotes the interaction process (if uq)/p <A,
Compton scattering occurs; if pq)/u > A, photoabsorption); &' determines the energy of the quantum after scattering
(calculated by the method of successive approximations, the first approximation being taken as o' = &); comparison of ¢
verifies fulfillment of the condition o' > & .5 the "reset™ operator is needed for preparing the program to calculate a
new history, i.e., for restoring the original form of the variable instructions.

To obtain pseudo-random numbers a special program based on choosing the middle of the product of two numbers
[3] was compiled. The process consists in multiplying together two n-digit random numbers Ay and Ay, (using multi-
plication with double precision); a 2n-digit product is obtained. The middle n-digits of the product are taken as Ak+s «
Then the process is repeated with Ak, and Ak4y to obtain the succeeding number, and so on. The program provides for
a check on the uniformity of distribution of the sequence of pseudo-random numbers over the interval (0, 1).

AW, - To calculate the energy absorbed, the irradiated medium is divided

| - % into concentric hemispheres at radial intervals of 3 and 5 cm. For each
ot | L ——c collision, the difference in energy of the incoming and outgoing y -quanta
] was recorded. The energy losses in collisions were then summed over each
ot [ FL}_ spherical layer. In view of the small range of secondary electrons, it was
- =3 assumed that all the energy losses were absorbed directly at the point of
60t BR interaction. The distribution of absorbed energy in an infinite hemisphere
{ N [’*"' L thus obtained is shown in the histogram in Fig. 2, which also shows the cor-
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03691215/8202%2730 35 40 45 T For comparison, the same histogram shows values of AW obtained by numer-
ical integration using values of the absorbed energy build-up factor obtained
by integrating the data of [6]. Clearly, the differences between values of
the absorbed energy obtained by the Monte Carlo method and by numerical
integration do not exceed 8%. For small thicknesses, this is linked with the
fact that with the assumed geometry contributions to the absorbed energy
due to quanta reflected from the back half-space are excluded. The appear-
ance of a maximum in the absorbed energy at a depth of 3-6 cm has the same explanation. A study of the effect of the
finiteness of the medinm of the distribution of absorbed energy in a hemisphere qualitatively confirms the relations ob-
tained by Spencer and Berger [7]. However, our values for the corrections for a finite medium are 0.6-0.9 times those
given in {7]. Comparison of the values of the absorbed energy obtained by the Monte Carlo and gamma-methods permits
certain conclusions on the applicability of the gamma -method to the calculation of the absorbed dose. For the thick-
nesses shown in Fig. 2, the method gives results that are somewhat too low (within 13%). The anomalous behavior of the
method at the boundary of the irradiated object (see histogram) is related to the influence of edge effects on the Monte
Carlo calculation.

Fig. 2. Energy absorbed inhemispherical
annular layers (MeV). 1017 y-quantum
histories were calculated: a) by Monte
Carlo, b) by the gamma-method, c¢) by
numerical integration.
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In calculating the energy and y-quanta fluxes, werecorded each cross- ‘
ing by a y-quantum of concentric spherical surfaces with the same spacing as /5 . 4
used in the absorbed energy calculations, with particular attention to quanta
scattered from hemispheres of greater radius to those of lesser radius. Values ‘ /
of the energy and number of quanta build-up factors are showninFig, 3. The # .
difference between the energy build-up factors obtained by the Monte Carlo /
method and in [6] does not exceed 10%. At small thicknesses, as in the case Sl P
of the absorbed dose build-up factor, the effect of the finiteness of the med- X 1y |
ium is not great. However, in the case of the number build-up factor the L—/’J'/
effect is more considerable. With increasing thickness, this factor increases
rapidly, due to the decrease in energy of the scattered quanta. The mean
energy of the scattered quanta as a function of the depth of penetration fora  Fig. 3. 1) Energy build-up facror,
hemisphere of radius 50 cm has the following values; forr=3 cm, E= 0.63  2) build-up factor for number of y -
MeV; 9—0.56; 15—0,49; 18—0,46; 21—0.43; 24—0.41; 27~0,38; 30—-0.36; quanta.
35—-0.32; 40-0.29; 50—0.25.
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There follows a detailed formulation of each operator used in calculating the quantum trajectories in water by the
Monte Carlo method:
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NOTATION

Ep — initial energy of y-quanta; o and o' — energies of quanta before and after scattering (o = Ef0.51); A —ran-
dom number; p (o) — coefficient of attenuation of y-radiation; lg — coefficient of photoabsorption; y — true absorption
coefficient; X, Y,Z — rectangular coordinates of point of interaction; r — distance from source to point of interaction;

L —range of quanta; R —radius of hemisphere; S — intensity of radiation source; W — energy absorbed at point of inter-
action; AW - energy absorbed in annular hemispherical layer; ¥ — azimuthal scattering angle; py — coefficient of
Compton scattering; the indices n and n + 1 relate to two successive collisions; 8, — angle between z axis and direction
of motion of a quantum after the n-th scattering; ¢ — angle between the plane XOZ and the plane passing through the
velocity vector of the quantum after the n-th collision and the Z axis; w — scattering angle of quantum in Compton
scattering.
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*The equation for p o Was suggested by V. A. El'tekov and B. M. Terent’ev.
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